
Public 

2024-04-09 
 

Specification 

Version 0.2.1/2024 

 

1 

 

  

 

 

 
 
 

 

  

 

 

 

 

 

Requirements Specification: 

Federated Trust Node 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Document: Requirements specification: Federated Trust Node  

Version: 0.2.1/2024  

 



Public 

2024-04-09 
 

Specification 

Version 0.2.1/2024 

 

2 

 

FEDERATED TRUST NODE 

REQUIREMENTS SPECIFICATION 

1 BACKGROUND 

The purpose of a Federated Trust Node is to provide mechanisms to create and publish 
verifiable information about members of a trust ecosystem as input to parties for making trust 
decisions. 

Findynet Cooperative is building infrastructure for enhanced trust and verifiable data in Finland. 
We believe that many ecosystems will benefit from a federated trust model. One of Findynet’s 
technical services will be a trust framework based on OpenID Federation specification (OIDF), 
see [1][1]. 

Our trust framework consists of independent nodes operated by different roles (Leaf Entities, 
Intermediate Entities, and Trust Anchors, as specified in OIDF. The organizations acting in the 
aforementioned roles need software to publish Entity Statements. We refer to this software as 
Federated Trust Node. 

This document specifies the requrements for the implementation of a Federated Trust Node. 
Our intention is to release the Federated Trust Node implementation acquired by Findynet as 
an open-source software that other organizations can install and operate in their environments. 

Findynet will also offer the Federated Trust Node functionality as a hosted service. When 
multiple verifiable data ecosystems are using Findynet’s Federated Trust Node service, 
Findynet may operate multiple Federated Trust Nodes. Thus, the Federated Trust Node should 
support multi-tenant deployment where it is easy to upgrade multiple instances of the software 
to a newer version while isolating the data of each instance from other instances. 

The OpenID Federation specification is still work in progress. The implementation of the 
Federated Trust Node should take the latest published draft as the baseline for the 
implementation and have flexible change management practices in place to follow the evolving 
specification. 

2 ARCHITECTURE 

This chapter describes the initial architectural design of the Federated Trust Node.  

2.1 General 

The Federated Trust Node shall be designed so that it can operate as a Trust Anchor, as an 
Intermediate Entity, or as a Leaf Entity. It shall support both single and multiple Trust Anchor 
models. 

The Federated Trust Node can be deployed on cloud or on-premises. The design shall not 
make any assumptions on the operating environment and shall not e.g. rely on cloud provider 
specific technologies.  

2.2 Interfaces and components 

Diagram 1 is an initial design of the interfaces the Federated Trust Node exposes (on the right), 
components used to publish those interfaces (in the middle) and data stores (on the left). 



Public 

2024-04-09 
 

Specification 

Version 0.2.1/2024 

 

3 

 

 

Diagram 1: Initial interface and component design (ArchiMate) 

The interfaces (endpoints) offered by the Subordinate Statement Publishing component and 
the Trust Mark Publishing component are public and implement the functionality specified in 
OIDF. The operator of the Federated Trust Node may implement client authentication as 
specified in the chapter 8.8 of OIDF. 

The interfaces (endpoints) offered by the Admin component shall be protected in the way 
described in the section 2.3 in this document. 

2.3 Access Control 

The Federated Trust Node shall support access control mechanisms to restrict access to all 
administrative functionality and ensure that only authorized users have permissions to perform 
aforementioned tasks. Access control shall be configurable to support fine-grained access 
control if required in the future. 

Details of the initial access control mechanism will be designed together with the vendor 
implementing the Federated Trust Node. 

2.4 Key Management and cryptographic operations 

Federated Trust Node shall support JWT signing operations while providing flexibility to choose 
between built-in key management and signing functionality or integration with external 

https://openid.net/specs/openid-federation-1_0.html#section-8.8


Public 

2024-04-09 
 

Specification 

Version 0.2.1/2024 

 

4 

 

Hardware Security Modules (HSMs), Key Management Services (KMSs), or other trusted 
environments. Trust Node operator shall have the option to configure the software to perform 
cryptographic operations in the chosen environment based on federations security 
requirements and operational preferences. 

2.5 REST APIs 

Each component of the Federated Trust Node (Entity Statement Publishing, Admin, Trust Mark 
Publishing) shall have a RESTful API exposing its functionality. The APIs shall be documented 
using OpenAPI format. 
 
All endpoints creating, updating, and deleting data shall have a dry-run variant which performs 
the operations and show the results without actually modifying any data. 

2.6 Graphical User Interface 

In addition to the REST APIs, the Federated Trust Node may offer a graphical, web browser 
based user interface for admin purposes. Details of the graphical user interface will be designed 
together with the vendor implementing the Federated Trust Node. 

2.7 Logs 

By default, the components of the Federated Trust Node shall output all audit log and system 
log records to their default output stream (stdout) and all errors log entries to the error stream 

(stderr). The Federated Trust Node may have a configurable logging component which allows 

the operator of the Federated Trust Node to direct the log entries to for example text files or to 
a database. 

The logging level of the Federated Trust Node shall be configurable. 

All log entries shall include at least 
▪ the timestamp of the error 
▪ error level (TRACE, DEBUG, INFO, NOTICE, WARN, ERROR, FATAL) 
▪ the error code or type 
▪ the error message (meaningful explanation of what happened) 
▪ the name of the component logging the error 
▪ the operation performed when the error occurred 
▪ the source code line number. 

2.7.1 Audit logs 

The Federated Trust Node shall produce audit logs. All Statement lifecycle operations, Trust 
Mark creations, and all admin operations shall be recorded to audit log.  

2.7.2 System logs 

The Federated Trust Node shall produce system logs that  can be used for monitoring system 
behavior, performance and stability. 

2.7.3 Error logs 

The Federated Trust Node shall produce a log entry for all error situations. 

3 FUNCTIONAL REQUIREMENTS 

This chapter describes the functional features of a Federated Trust Node. The requirements in 
this chapter are derived from the draft 33 of the OIDF specification [1][1]. 



Public 

2024-04-09 
 

Specification 

Version 0.2.1/2024 

 

5 

 

3.1 Entity Configuration 

3.1.1 Create 

The Federated Trust Node shall have functionality for creating Entity Configuration statements. 
Entity Configuration generation shall support all mandatory parameters as defined in OIDF and 
the created statement shall be verified to be compliant with OIDF. 

3.1.2 Publish 

The Entity Configuration shall be made available at /.well-known/openid-federation endpoint as 
defined in OIDF. 

3.1.3 Update or renew 

Federated Trust Node shall have functionality to update or renew its Entity Configuration. Entity 
Configuration shall be renewed before its expiration. All expired or otherwise invalidated Entity 
Configurations shall be kept in the repository. 

3.2 Subordinate Statement Repository 

Subordinate Statement Repository is the core function of the Federated Trust Node software. 
It provides functionality for creating and publishing Subordinate Statements and for managing 
their lifecycle. 

The repository shall have the following publicly available endpoints ad defined in OIDF: 
▪ federation_fetch_endpoint 
▪ federation_list_endpoint 
▪ federation_resolve_endpoint 
▪ federation_historical_keys_endpoint 

The functionality of the endpoints mentioned above shall comply with the OIDF specification. 

3.2.1 Create and publish Subordinate Statements 

The Federated Trust Node shall have functionality for creating Subordinate Statements. 

When creating Subordinate Statements the Federated Trust Node shall verify all input 
parameters, and validate that the resulting Trust Chain is valid and terminates to one or more 
Root of Trust. 

Created Subordinate Statements shall be made available for download from  
federation_fetch_endpoint. 

3.2.2 Renew Subordinate Statements 

The Federated Trust Node software shall automatically renew and publish Subordinate 
Statements before their expiration. When renewing the Subordinate Statements the system 
shall perform the same verifications as in when creating new Subordinate Statement. If the 
verification fails the system shall not renew the statement. 

The Federated Trust Node shall have functionality for renewing one or more Subordinate 
Statements at any point in time. This functionality shall be available only for admin users. 

Expired or replaced Subordinate Statements shall not be deleted from repository. 

Subordinate statement renewal shall not have impact on Federated Trust Node availability. 



Public 

2024-04-09 
 

Specification 

Version 0.2.1/2024 

 

6 

 

3.2.3 Subordinate Statement deletion  

The Federated Trust Nodeshall have functionality for deleting Subordinate Statements it has 
issued.  

Once Subordinate Statement is deleted it shall not anymore be downloadable from 
federation_fetch_endpoint. However all deleted Subordinate Statements shall be kept in 
repository. 

3.2.4 Subordinate Statement Revocation 

Current version of OIDF does not specify Subordinate Statement revocation mechanism apart 
from deleting and unpublishing the Statement. Revocation mechanisms, such as Token Status 
List (see [1][2]) might be specified in the future and the Federated Trust Node shall allow such 
mechanisms to be used. 

3.2.5 List subordinate statements 

The Federated Trust Node shall have functionality to list active Subordinate Statements.  

Active Subordinate Statements shall be available from federation_list_endpoint. 

3.3 Trust Mark Publishing 

The Federated Trust Node shall have functionality for creating and publishing Trust Marks as 
specified in OIDF specification. The created Trust Marks shall comply with the OIDF 
specification. 

The Federated Trust Node shall have the following publicly available endpoints:  
o federation_trust_mark_status_endpoint 
o federation_trust_mark_list_endpoint 
o federation_trust_mark_endpoint 

The functionality of the endpoints mentioned above shall comply with the OIDF specification. 

3.4 Federated Trust Node Admin API 

All Subordinate Statement lifecycle operations, Trust Mark publishing and admin operations 
shall be available via REST API. The table below has example endpoints the Federated Trust 
Node should have. 

Endpoint Method Purpose Protected 

/create POST Create new Subordinate Statement, should have 
also dry-run functionality 

YES 

/delete DELETE Delete existing subordinate statement, move to 
historical data 

YES 

/renew POST Renew existing statement(s) YES 

/trustmark POST Create or update a Trust Mark YES 

/config GET/POST Generic endpoint for viewing and modifying 
system configuration 

YES 

/status GET Status endpoint for monitoring system availability 
and functionality  

NO 

/stats GET System statistics endpoint YES 
Table 2: Example endpoints 

The API shall be documented using OpenAPI format. 



Public 

2024-04-09 
 

Specification 

Version 0.2.1/2024 

 

7 

 

4 NON-FUNCTIONAL REQUIREMENTS 

4.1 Availability 

The Federated Trust Node shall be designed for high availability. Operations such as statement 
batch renewal should have only minimal impact on system availability and performance. 

4.2 Performance 

In a federated trust model, the check of the trustworthiness of an entity may require multiple 
queries to multiple Federated Trust Node. 

The Federated Trust Node doesn’t need to have an internal cache but it shall support the 
caching-related HTTP header values (e.g., Cache-Control, Expires, ETag, If-Modified-
Since, If-None-Match) for each publishing endpoint and it shall have the possibility to 

configure the expiration time for each endpoint. 

4.3 Scalability 

The Federated Trust Node shall be designed to scale horizontally to accomodate an increasing 
number of Subordinate Statements and requests over time. For example, the Federated Trust 
Node Operator should be able to run multiple parallel instances of the Subordinate Statement 
Publishing component (see Diagram 1) using a load balancer in front of them. 

4.4 Security 

The Federated Trust Node shall have appropriate access controls to ensure that only authorized 
users can create, update, or delete Entity Configurations,  Subordinate Statements and Trust 
Marks. 

4.5 Configurability 

The Federated Trust Node shall have mechanisms to configure its operational parameters, such 
as default statement lifetime. The Federated Trust Node shall read its operational parameters 
both from environment variables and a configuration file, the former having a higher priority. 

Configuraton Statement creation shall be template based and should allow adding or removing 
mandatory or optional claim parameters. 

5 REFERENCES 

[1] OpenID Federation 1.0 - draft 33, openid.net/specs/openid-federation-1_0.html 

[2] Token Status List – draft 02, ietf.org/id/draft-ietf-oauth-status-list-02.html 

https://openid.net/specs/openid-federation-1_0.html
https://www.ietf.org/id/draft-ietf-oauth-status-list-02.html

	1 Background
	2 Architecture
	2.1 General
	2.2 Interfaces and components
	2.3 Access Control
	2.4 Key Management and cryptographic operations
	2.5 REST APIs
	2.6 Graphical User Interface
	2.7 Logs
	2.7.1 Audit logs
	2.7.2 System logs
	2.7.3 Error logs


	3 Functional Requirements
	3.1 Entity Configuration
	3.1.1 Create
	3.1.2 Publish
	3.1.3 Update or renew

	3.2 Subordinate Statement Repository
	3.2.1 Create and publish Subordinate Statements
	3.2.2 Renew Subordinate Statements
	3.2.3 Subordinate Statement deletion
	3.2.4 Subordinate Statement Revocation
	3.2.5 List subordinate statements

	3.3 Trust Mark Publishing
	3.4 Federated Trust Node Admin API

	4 Non-functional Requirements
	4.1 Availability
	4.2 Performance
	4.3 Scalability
	4.4 Security
	4.5 Configurability

	5 References

